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1 Introduction

During the last years, the understanding of the open sector of type II string theories has

grown to a mature state. In particular, on the type IIA side, where intersecting D6-

branes allow for a geometric interpretation of the underlying structure, a set of rules for

studying the low energy effective theory has been established [1] including consistency

conditions such as the tadpole cancellation conditions and formulas for computing the chi-

ral spectrum. Furthermore, it is known how to deal with anomalies via the generalized

Green-Schwarz mechanism [2–9] and by imposing K-theory constraints [10, 11]. Within this

framework, mostly on toroidal orbifolds, a huge number of models with various properties

has been constructed.

However, orientifolds of type IIB string theory with D9- and D5-branes have been

studied for an even longer time and are equally well-understood. Here, not intersecting
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branes but branes endowed with vector bundles are the objects of interest and, similarly

as on the IIA side, model building rules have been established (see for instance [12] for

the case of smooth Calabi-Yau compactifications) and a large number of models has been

constructed. Furthermore, T-duality allows to connect constructions on the type IIB and

the type IIA side which in the past has helped to gain a better understanding for both

descriptions. For a recent summary on the connection between type IIA models with D6-

branes and type IIB models with D9-/D5-branes, including some generalizations, see [13].

But type IIB string theory also allows for orientifold projections leading to configura-

tions with D3- and D7-branes. Via T-duality, one naturally expects the open string sector

to have the same features as the other two constructions which have been worked out

for instance in [14, 15]. To our knowledge, however, some ingredients still require further

study. In particular, although toroidal models are understood very well from a Confor-

mal Field Theory point of view, for a smooth compactification manifold the generalized

Green-Schwarz mechanism has not been checked to work and also the tadpole cancellation

conditions have not been derived in full detail.1

Let us emphasize this point: in this work, we focus solely on orientifold compactifica-

tions of string theory on smooth Calabi-Yau three-folds and formulate the effective theory

in terms of topological quantities such as cycles and Chern characters. On the other hand,

toroidal type IIB orientifolds generically contain singularities which are not suited for a

geometric description but allow for a CFT formulation. For such configurations, the gen-

eralized Green-Schwarsz mechanism and the tadpole cancellation conditions are very well

understood from a Conformal Field Theory point of view. Some of the references in this

context are [4–9, 17–21].

As we have illustrated, from a phenomenological and geometrical point of view, the

open string sector on smooth Calabi-Yau orientifolds is best understood on the type IIA

side and on the type IIB side with D9- and D5-branes. The closed sector on the other hand

is well-understood for type IIB orientifolds with D3- and D7-branes where the KKLT [22]

and the Large Volume Scenarios [23, 24] allow for a controlled study of closed string moduli

stabilization. (For a recent discussion on the Large Volume Scenarios see [25].) However,

as has been emphasized in [26], moduli stabilization in the closed sector depends on the

structure of the open sector and so it is necessary to understand also the latter for D3- and

D7-branes in more detail.

Furthermore, F-theory [27] provides a description of type IIB string theory with D3-

and D7-branes beyond the perturbative level which has recently become of interest for phe-

nomenology [28–39] (see also [40]). Although the constructions in this context concentrate

mostly on local models, at some point these have to be embedded into a compact manifold

implying for instance that the tadpole cancellation conditions have to be satisfied.

The outline and the results of this work are summarized as follows. In section 2,

we derive the tadpole cancellation conditions for type IIB string theory compactified on

orientifolds of smooth Calabi-Yau three-folds with D3- and D7-branes. In addition to the

1The schematic form of the tadpole cancellation conditions for type IIB orientifolds with D3- and D7-

branes from a geometric point of view has recently appeared in [16], however, here we study these conditions

in detail.
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well-known D3- and D7-brane tadpoles, we also work out the cancellation conditions for

induced D5-brane charges. In section 3, we briefly summarize the expressions for the chiral

anomalies in the present context, and in section 4, we show that the generalized Green-

Schwarz mechanism indeed cancels the anomalies using the tadpole cancellation conditions.

In particular, we emphasize that in general the induced D5-brane charge conditions have to

be employed. In section 5, we generalize our analysis by including D9- as well as D5-branes

for which we work out the tadpole cancellation conditions and the formulas for computing

the chiral spectrum. In section 6, we finish with some conclusions.

2 Tadpole cancellation conditions

2.1 Setup and notation

Before deriving the tadpole cancellation conditions, let us first make clear the setup we are

working in and recall some results needed for the following.

Orientifold compactification. We consider type IIB string theory compactifications

from a ten-dimensional space-time to four dimensions on a compact Calabi-Yau three-

fold X

R
9,1 → R

3,1 ×X . (2.1)

In order to introduce D-branes and break supersymmetry to N = 1 in four dimensions, we

also perform an orientifold projection Ω(−1)FLσ where Ω is the world-sheet parity opera-

tor, FL is the left-moving fermion number and σ is a holomorphic involution on X . The

action of σ on the Kähler form J and the holomorphic three-form Ω3 of X is chosen to be

σ∗J = +J , σ∗Ω3 = −Ω3 , (2.2)

allowing for O3- and O7-planes. The action of Ω(−1)FL on the metric g, the dilaton φ,

the Neveu Schwarz-Neveu Schwarz (NS-NS) two-form B2, the gauge invariant open string

field strength F and the Ramond-Ramond (R-R) p-form potentials Cp is determined to be

of the following form [41–43]

Ω (−1)FL g = + g , Ω (−1)FL F = −F ,

Ω (−1)FL φ = + φ , Ω (−1)FL Cp = (−1)
p

2 Cp ,

Ω (−1)FL B2 = − B2 . (2.3)

Note that we are going to work with the democratic formulation of type IIB supergrav-

ity [44] so that the R-R p-form potentials Cp appear for p = 0, 2, 4, 6, 8(, 10).

(Co-)homology. The holomorphic involution σ introduced above gives rise to a splitting

of the cohomology groups Hp,q(X , Z) into the even and odd eigenspaces of σ∗ (here we

mainly follow [43])

Hp,q = Hp,q
+ ⊕ Hp,q

− . (2.4)

– 3 –
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The dimensions of these spaces are denoted by hp,q
± for which the following relations can

be determined [43]

h1,1
± = h2,2

± , h3,0
+ = h0,3

+ = 0 , h0,0
+ = h3,3

+ = 1 , (2.5)

h2,1
± = h1,2

± , h3,0
− = h0,3

− = 1 , h0,0
− = h3,3

− = 0 . (2.6)

Next, let us introduce some notation for the third (co-)homology group of X . In partic-

ular, we denote a basis of three-cycles on X by {αi, β
j} ∈ H3(X , Z) where i, j = 0, . . . , h2,1.

This basis can be chosen in such a way, that the Poincaré duals {[αi], [β
j ]} satisfy

∫

X

[αi] ∧ [βj ] = l6s δj
i ,

∫

X

[αi] ∧ [αj ] =

∫

X

[βi] ∧ [βj ] = 0 , (2.7)

where ls denotes the string length. Note that, as indicated in (2.4), these relations de-

compose into the even and odd eigenspaces of σ∗, which means that the only non-trivial

relations are

∫

X

[α±
i ] ∧ [β±j ] = l6s δj

i with

{
i, j = 1, . . . , h2,1

+ for + ,

i, j = 0, . . . , h2,1
− for − ,

(2.8)

where ± labels elements of the even respectively odd co(-homology) group. To continue,

we denote a basis of (1, 1)- and (2, 2)-forms on X as

{
ωI

}
∈ H1,1

(
X , Z

)
,

{
σI
}
∈ H2,2

(
X , Z

)
. (2.9)

These two basis will be chosen such that
∫

X

ωI ∧ σJ = l6s δJ
I , (2.10)

where the index I takes values I = 1, . . . , h1,1(X ) and, similarly as above, this relation

decomposes into the even and odd eigenspaces of σ∗. Finally, we introduce a basis of four-

and two-cycles on X

{
γI

}
∈ H4

(
X , Z

)
,

{
ΣI
}
∈ H2

(
X , Z

)
, (2.11)

in such a way that the Poincaré duals of γI and ΣI are [γI ] = 1
l2s

ωI respectively [ΣI ] = 1
l4s

σI .

Concretely, this means that
∫

γI

σJ = l4s δJ
I ,

∫

ΣI

ωJ = l2s δI
J . (2.12)

Background fluxes. Let us now consider the closed string sector in some more detail.

In particular, we are allowed to turn on supersymmetric background fluxes in X , i.e. we

can have non-vanishing VEVs for [45]

F3 = dC2 and H3 = dB2 . (2.13)

Because of the Dirac quantization condition, such fluxes are quantized. Furthermore,

since we perform an orientifold projection Ω(−1)FLσ, there are some subtleties due to the

– 4 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
2

involution σ on X [46, 47]. Although these issues can be dealt with, here we stay on firm

grounds and impose the following quantization conditions

1

l2s

∫

α−

i

F3 = 2fi ∈ 2Z ,
1

l2s

∫

β−j

F3 = 2f j ∈ 2Z ,

1

l2s

∫

α−

i

H3 = 2hi ∈ 2Z ,
1

l2s

∫

β−j

H3 = 2hj ∈ 2Z , (2.14)

with i, j = 0, . . . , h2,1
− . Note that because F3 and H3 are odd under Ω(−1)FL , we only turn

on flux through cycles {α−
i , β−j} odd under the orientifold projection. Using then (2.14)

and (2.7), we can express F3 and H3 in the following way

F3 =
2

ls

(
f i
[
α−

i

]
− fj

[
β−j

])
, H3 =

2

ls

(
hi
[
α−

i

]
− hj

[
β−j

])
. (2.15)

D-Branes and gauge fluxes. After having discussed fluxes in the closed sector, we now

turn to the open sector. The fixed loci of the involution σ on X are called orientifold planes

and for the choice (2.2), these are O3- and O7-planes usually carrying negative R-R and

NS-NS charges. Therefore, as we will see below, we have to introduce a combination of

D3-branes and background flux as well as D7-branes wrapping

holomorphic divisors ΓD7 in X . (2.16)

It is furthermore possible to turn on gauge flux F on the D7-branes which, in order to

preserve supersymmetry, has to obey the constraints [15, 48, 49]

F
(2,0)

= F
(0,2)

= 0 ,
(
J ∧ F

)∣∣∣
ΓD7

= 0 . (2.17)

Moreover, to preserve four-dimensional Lorentz invariance, we consider gauge flux F only

in the internal space X and so we make the following ansatz for the total open string field

strength F

F = F + F (2.18)

with F denoting the field strength of the gauge field in R
3,1 while F stands for the flux

components in X . However, F is not gauge invariant and so we define

F = −i
(
l2s F + 2πϕ∗B2 1

)
, (2.19)

which we call the gauge invariant open string field strength. In (2.19), ls denotes again the

string length, B2 is the NS-NS two-form and ϕ∗ is the pull-back from X to the holomorphic

divisor ΓD7 the D7-brane is wrapping. Note that we will also employ the notation

F . . . components of F in X . (2.20)

To conclude our discussion of the open string gauge fluxes, let us split the NS-NS two-

form B2 on X into parts which are even respectively odd under the holomorphic involution σ

B
(6)
2 = B+

2 + B−
2 , σ∗B±

2 = ±B±
2 , (2.21)
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where (6) denotes the components of B2 in X . Due to the action of Ω(−1)FL , B+
2 has to

take discrete values which is important for the correct quantization of

F
+

= −i
(
l2s F + 2π ϕ∗B+

2 1
)

(2.22)

(see for instance [13] and references therein). The components B−
2 on the other hand, are

part of the moduli GI− for I− = 1, . . . , h1,1
− [14, 43] (see also [50]) and take continuous values.

Finally, we denote the total curvature two-form of the tangent bundle of R
3,1 × X by

R which splits into R and R defined on R
3,1 respectively X . For dimensional reasons, we

then define

R = l2s R = l2s
(
R + R

)
. (2.23)

2.2 Effective actions

As we have already mentioned, in order to study D3- and D7-branes, it is useful to work

with the democratic formulation of type IIB supergravity in ten dimensions. The bosonic

part of this (pseudo-)action reads [44]

SIIB =
1

2κ2
10

∫ [
e−2φ

(
R ⋆ 1 + 4 dφ ∧ ⋆dφ −

1

2
H3 ∧ ⋆H3

)
−

1

4

∑

p=1,3,5,7,9

F̃p ∧ ⋆F̃p

]
, (2.24)

where (2κ2
10)

−1 = 2π l−8
s , the star ⋆ stands for the Hodge-⋆-operator and R denotes the

curvature scalar. The generalized field strengths F̃p together with their duality relations

take the following form

F̃p = dCp−1 − H3 ∧ Cp−3 , F̃p = (−1)
p+3
2 ⋆ F̃10−p . (2.25)

Later, we will focus on the equation of motion for the Ramond-Ramond (R-R) fields C8,

C6 and C4 and so we calculate the variation of (2.24) with respect to these fields

δC4SIIB =
1

4κ2
10

∫
δC4 ∧

(
+dF̃5 − H3 ∧ F̃3

)
,

δC6SIIB =
1

4κ2
10

∫
δC6 ∧

(
−dF̃3 + H3 ∧ F̃1

)
,

δC8SIIB =
1

4κ2
10

∫
δC8 ∧

(
+dF̃1

)
. (2.26)

Since we only turn on fluxes F3 and H3, the term H3 ∧ F̃1 vanishes. For the first line

in (2.26), we employ (2.15) and (2.7) to calculate

1

l4s

∫

X

H3 ∧ F̃3 =
1

l4s

∫

X

H3 ∧ F3 = 4
(
hi f i − hi fi

)
= −4Nflux ∈ 4Z , (2.27)

where the minus sign has been chosen for later convenience.

After having discussed the closed sector, we now turn to the open sector for which the

Chern-Simons action of the Dp-branes and Op-planes read [51–56] (see also [57])

SCS
Dp = −µp

∫

Dp
ch (F) ∧

√
Â(RT )

Â(RN )
∧
⊕

q

ϕ∗Cq ,

SCS
Op = −Qp µp

∫

Op

√
L(RT /4)

L(RN/4)
∧
⊕

q

ϕ∗Cq , (2.28)
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Here, ϕ∗ denotes again the pull-back from X to the manifold the D-brane respectively O-

plane is wrapping and RT , RN stand for the restrictions of R to the tangent and normal

bundle of this manifold. Furthermore, in the present case we have2

µp =
2π

lp+1
s

κp with
κ7 = +1 ,

κ3 = −1 ,
(2.29)

and the sums in (2.28) run over q = 0, 2, 4, 6, 8, 10. The charge of the Op-planes is given

by Qp = −2p−4.

The definition of the Chern character, the Â genus and Hirzebruch polynomial L can

be found in appendix A together with the calculation leading to the following expressions

D3 :

√
Â(RT )

Â(RN )
=

(
1 +

1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
,

D7 :

√
Â(RT )

Â(RN )
=

(
1 +

1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧

(
1 +

l4s
24

c2

(
ΓD7

)
+ . . .

)
,

O3 :
√

L(RT /4)
L(RN /4) =

(
1 −

1

192

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
,

O7 :
√

L(RT /4)
L(RN /4) =

(
1 −

1

192

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧

(
1 −

l4s
48

c2

(
ΓO7

)
+ . . .

)
. (2.30)

Note that R is defined on R
3,1 and that the four-form c2 is defined on X . Also, we

have only shown the terms relevant for the integrals in the Chern-Simons actions. With

the help of (2.30), we can now compute the variation of the actions (2.28) with respect to

C4, C6 and C8. We find

δC4S
CS
D3 = +µ3

∫

R3,1

δC4 ND3 ,

δC4S
CS
O3 = +µ3

∫

R3,1

δC4

(
−

1

2

)
,

δC4S
CS
D7 = −µ7

∫

R3,1

δC4 ∧

∫

ΓD7

(
ch2

(
F
)

+ l4s ND7
c2

(
ΓD7

)

24

)
,

δC4S
CS
O7 = −µ7

∫

R3,1

δC4 ∧

∫

ΓO7

l4s
c2

(
ΓO7

)

6
, (2.31)

with ND3 = ch0

(
FD3

)
and ND7 = ch0

(
FD7

)
denoting the number of D3- respectively D7-

branes on top of each other. Furthermore, Γ is again the holomorphic four-cycle wrapped

by the D7-branes and O7-planes in the compact space, and F stands for the part of F in

2The signs κp = ±1 in (2.29) have already appeared in [12], where they were crucial in order to obtain the

correct matching between the tadpole cancellation conditions of type IIB orientifolds with D9-/D5-branes

and the anomaly cancellation condition of the heterotic string. Similarly, here the signs are important to

match the D3-brane tadpole cancellation condition with F-theory.

– 7 –
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X . In a similar way as above, we compute the variation of the Chern-Simons actions with

respect to C6 as follows

δC6S
CS
D7 = −µ7

∫

R3,1×ΓD7

(
ϕ∗δC6

)
∧ ch1

(
F
)

, δC6S
CS
O7 = 0 , (2.32)

and the variation with respect to C8 is found to be

δC8S
CS
D7 = −µ7

∫

R3,1×ΓD7

(
ϕ∗δC8

)
ND7 , δC8S

CS
O7 = −µ7

∫

R3,1×ΓO7

(
ϕ∗δC8

)(
−8
)
. (2.33)

2.3 Tadpole cancellation conditions

Combining the results from the previous subsection, we can now determine the tadpole

cancellation conditions for type IIB orientifolds with D3- and D7-branes. However, because

of the orientifold projection Ω(−1)FLσ, we have to take into account the orientifold planes

as well as the orientifold images of the D-branes. Denoting these images by a prime, the

schematic form of the full action is

S =
1

2


2 SIIB +

∑

a,a′

SCS
D7a

+
∑

i

SCS
O7i

+
∑

b,b′

SCS
D3b

+
∑

j

SCS
O3j


 . (2.34)

In order to be more concrete later, using (2.3), we determine the data for an orientifold

image of a D-brane as follows

Γ′
Dp = Ω (−1)FLσ ΓDp = (−1)

p+1
2 σ ΓDp ,

F
+′

= Ω (−1)FLσ∗ F
+

= −σ∗F
+

, (2.35)

where ΓD7 is a holomorphic divisor in X while ΓD3 is a point in X corresponding to a

D3-brane.

D7-brane tadpole cancellation condition. The equations of motion for C8 are ob-

tained by setting to zero the variation of (2.34) with respect to C8. Using (2.26) and (2.33),

we compute

0 =
1

2

2π

l8s

∫

R3,1×X

δC8 ∧

[
dF̃1 −

1

l2s

∑

D7a,D7a′

ND7a

[
ΓD7a

]
−

1

l2s

∑

O7i

(
−8
)[

ΓO7i

]
]
, (2.36)

where ND7a is the total number of D7-branes with gauge flux F a wrapping the four-cycle

ΓD7a , and [Γ] stands for the Poincaré dual of the four-cycle Γ in X . Since the variations

δC8 are arbitrary and dF̃1 is exact, in cohomology the expression above can be written as

∑

D7a

ND7a

(
[ΓD7a ] + [Γ′

D7a
]
)

= 8
∑

O7i

[ΓO7i
] , (2.37)

which is known as the D7-brane tadpole cancellation condition.

– 8 –
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D5-brane tadpole cancellation condition. Employing (2.26) and (2.32) as well as

the basis of (1, 1)-forms {ωI} ∈ H1,1(X , Z) introduced in equation (2.9), the equations of

motion originating from C6 are found to be of the following form

0 =
∑

D7a

(∫

ΓD7a

ch1

(
Fa

)
∧ ωI +

∫

Γ′

D7a

ch1

(
F

′
a

)
∧ ωI

)

=
∑

D7a

∫

X

(
ch1

(
ϕ∗Fa

)
∧ [ΓD7a ] + ch1

(
ϕ∗F

′
a

)
∧
[
Γ′

D7a

])
∧ ωI (2.38)

where the prime denotes again the Ω(−1)FLσ image and ϕ∗F is the push-forward of F

from the D7-brane to the Calabi-Yau manifold X .

Note that (2.38) is not trivially vanishing which can be seen by utilizing the relation
∫

X

σ∗ωI ∧ σ∗ωJ ∧ σ∗ωK =

∫

X

ωI ∧ ωJ ∧ ωK . (2.39)

In particular, recalling from (2.3) that F is odd under Ω(−1)FL , we can rewrite (2.38) as

0 =
∑

D7a

ch1

(
ϕ∗Fa

)
∧ [ΓD7a ] ∧

(
ωI − σ∗ωI

)
, (2.40)

which is a non-trivial constraint if h1,1
− 6= 0.

However, the D5-brane tadpole cancellation condition is not yet satisfying.3 In order to

explain this point, let us recall from our discussion around equation (2.21) that F contains

B−
2 which takes continuous values. Since the tadpole cancellation conditions usually involve

only discrete quantities, the dependence on B−
2 should disappear. And indeed, using the

definition of the Chern character (A.1) as well as (2.21) and (2.22), we compute

ch1

(
ϕ∗Fa

)
= ch1

(
ϕ∗F

+
a

)
+ ND7 B−

2 . (2.41)

Employing then the D7-brane tadpole cancellation condition (2.37), we find for the B−
2

terms in (2.38) that

∑

D7a

∫

X

(
ND7a B−

2 ∧ [ΓD7a ] + ND7a B−
2 ∧

[
Γ′

D7a

])
∧ ωI

= 8
∑

O7i

∫

X

[ΓO7i
] ∧ B−

2 ∧ ωI = 8
∑

O7i

∫

ΓO7i

ϕ∗B−
2 ∧ ωI . (2.42)

The final step is to observe that since the orientifold planes are pointwise invariant under the

involution σ, there are no odd two-cycles on ΓO7, that is H2−(ΓO7, Z) = 0. Because B−
2 is in

H1,1
− (X , Z), we see that in this case ϕ∗B−

2 = 0 and so the integral (2.42) vanishes. The D5-

brane tadpole cancellation condition therefore contains only discrete quantities and reads

0 =
∑

D7a

(
ch1

(
ϕ∗F

+
a

)
∧ [ΓD7a ] + ch1

(
ϕ∗F

+′

a

)
∧
[
Γ′

D7a

])
∧ ωI . (2.43)

3We thank the authors of [39] for pointing out this issue to us. The discussion in this paragraph

is based on work in [39], which we present here in order to give a consistent derivation of the tadpole

cancellation conditions.
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D3-brane tadpole cancellation condition Let us finally study the equation of motion

for C4 which is obtained by setting to zero the variation of (2.34) with respect to C4.

Employing (2.26) and (2.31), we compute

0 =
1

2

2π

l4s

∫

R3,1

δC4 ∧

[
1

l4s

∫

X

(
dF̃5 − H3 ∧ F̃3

)
+

∑

D3b,D3b′

ND3b
−
∑

O7i

NO3i

2

−
1

l4s

∑

D7a,D7a′

∫

ΓD7a

(
ch2

(
Fa

)
+ l4s ND7a

c2

(
ΓD7a

)

24

)
−
∑

O7j

∫

ΓO7j

c2

(
ΓO7j

)

6

]
. (2.44)

By the same arguments as for the D5-brane tadpole, the dependence of (2.44) on B−
2

should vanish. In order to see this, we employ the definition (A.1) to obtain

ch2

(
F
)

= ch2

(
F

+)
+ ch1

(
F

+)
∧
(
ϕ∗B−

2

)
+

ND7

2

(
ϕ∗B−

2

)2
, (2.45)

which we use to calculate

∑

D7a,D7a′

∫

ΓD7a

ch2

(
Fa

)
=

∑

D7a,D7a′

∫

ΓD7a

[
ch2

(
F

+
a

)
+ ch1

(
F

+
a

)
∧
(
ϕ∗B−

2

)]

+
1

2

∑

D7a

∫

X

(
B−

2

)2
ND7a

(
[ΓD7a ] + [Γ′

D7a
]
)

=
∑

D7a,D7a′

∫

ΓD7a

ch2

(
F

+
a

)
. (2.46)

In going from the second to the third line, we utilized the D5-brane tadpole cancella-

tion condition to observe that the terms involving ch1(F
+
) have to vanish, and for the

cancellation of the expressions containing (B−
2 )2, we used the same reasoning as in (2.42).

Next, following [16] (see also [58]), D7-branes on the orientifold space can have double-

instersection points and can therefore be singular. Thus, the definition of the corresponding

Euler characteristic

χ
(
Γ
)

=

∫

Γ
c2

(
Γ
)

(2.47)

is ambiguous. However, as has been explained in [16, 59], the Euler characteristic of an

appropriate blow-up of the singularity minus the number of pinch-points leads to the correct

result. We will denote the physical Euler characteristic of [16, 59] by χo(Γ), which reduces

to the usual Euler characteristic (2.47) for smooth D7-branes.

Employing equation (2.27) for the background fluxes and denoting the total number of

D3-branes by ND3 as well as the total number of O3-planes by NO3, we deduce from (2.44)

the D3-brane tadpole cancellation condition to be of the form

ND3 + 2Nflux =
NO3

4
+

1

l4s

∑

D7a

∫

ΓD7a

ch2

(
F

+
a

)
+
∑

D7a

ND7a

χo(ΓD7a

)

24
+
∑

O7j

χ
(
ΓO7j

)

12
. (2.48)
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3 Chiral anomalies

Before determining the chiral anomalies for a configuration of D7-branes, we are going to

first comment on the possible gauge groups. To do so, let us denote the gauge group on a

stack of ND7 D7-branes without gauge flux by G, which for type II constructions usually

is U(ND7) or Sp(2ND7) respectively SO(2ND7). If we turn on gauge flux F with structure

group H ⊂ G, then the observable gauge group H is the commutant of H in G

H =
{

h ∈ G :
[
h, h

]
= 0 ∀ h ∈ H

}
. (3.1)

However, in order to simplify our discussion, we will consider only U(1) gauge fluxes on

the D7-branes which are diagonally embedded into U(ND7) in the following way

F = f 1ND7×ND7
. (3.2)

Let us emphasize that the discussion in the following two sections of this paper relies on

this choice of flux and its embedding. For a different structure group H or embedding into

G, the calculations become slightly more involved.

We now turn to the chiral anomalies. The anomaly coefficients are expressed in terms

of the cubic Casimir A(r), the index C(r) and the U(1) charge Q(r) where r denotes a

particular representation. For SU(N), these quantities are summarized in table 1 and

the discussion for SO(2N) and Sp(2N) gauge groups can be found in appendix B. More

concretely, the cubic non-abelian, the mixed abelian-non-abelian, the cubic abelian and

the mixed abelian-gravitational anomalies are calculated via the following formulas (see

for instance [60])

ASU(ND7a )3 =
∑

r

A(r) ,

AU(1)a−SU(ND7b
)2 =

∑

r

Qa(r)Cb(r) ,

AU(1)a−U(1)2
b

=
∑

r

Qa(r)Q2
b(r) dim(r) ,

AU(1)a−G2 =
∑

r

Qa(r) dim(r) . (3.3)

In order to determine these anomalies, we have to employ the rules for computing the

chiral spectrum which are summarized in table 2. The chiral index Iab used in this table

is defined in the following way [57, 61–64]

Iab =

∫

X

1

l6s

(
ch1

(
ϕ∗Fa

)

ND7a

−
ch1

(
ϕ∗F b

)

ND7b

)
∧
[
ΓD7a

]
∧
[
ΓD7b

]
. (3.4)

The somewhat unusual factors of N−1
D7 are due to the fact, that we are counting represen-

tations.4 Next, employing our definitions (2.21) and (2.22), we see that B−
2 cancels out

4The chiral number of massless excitations between two D7-branes a and b is counted by the index
eIab =

R
X

1
l6
s

“
ch1

`
ϕ∗Fa

´
ch0

`
ϕ∗Fb

´
− ch0

`
ϕ∗Fa

´
ch1

`
ϕ∗Fb

´”
∧

ˆ
ΓD7a

˜
∧

ˆ
ΓD7b

˜
, which in the present case

reduces to (3.4) when counting representations.
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F F S S A A

dim(r) N N N(N+1)
2

N(N+1)
2

N(N−1)
2

N(N−1)
2

Q(r) +1 −1 +2 −2 +2 −2

C(r) 1
2

1
2

N+2
2

N+2
2

N−2
2

N−2
2

A(r) +1 −1 N + 4 −(N + 4) N − 4 −(N − 4)

Table 1. Group theoretical quantities for SU(N) where F stands for the fundamental, S for the

symmetric and A for the anti-symmetric representation (see for instance [60]).

Representation Multiplicity

(Na, Nb) Iab

(Na, Nb) Ia′b

Sa
1
2(Ia′a − 2 IO7a)

Aa
1
2(Ia′a + 2 IO7a)

Table 2. Formulas for determining the chiral spectrum. Here (Na, Nb) denotes a bi-fundamental

representation of the gauge group Ga × Gb while Sa and Aa stand for the symmetric respectively

anti-symmetric representation of the gauge group Ga.

in (3.4) and so, as expected, only the quantized flux F
+

contributes to the chiral index

Iab =

∫

X

1

l6s

(
ch1

(
ϕ∗F

+
a

)

ND7a

−
ch1

(
ϕ∗F

+
b

)

ND7b

)
∧
[
ΓD7a

]
∧
[
ΓD7b

]
. (3.5)

Cubic non-abelian anomaly. For the computation of the cubic non-abelian anomaly,

we focus on the D7-brane labelled by a and calculate using (3.5)

ASU(ND7a )3 =
∑

D7b

ND7b

(
Iba + Ib′a

)
− 8

∑

O7i

IO7i a

= −

∫

X

ch1

(
ϕ∗F

+
a

)

ND7a

∧ [ΓD7a ] ∧

(∑

D7b

ND7b

(
[ΓD7b

] + [Γ′
D7b

]
)
− 8

∑

O7i

[ΓO7i
]

)

+

∫

X

∑

D7b

(
ch1

(
ϕ∗F

+
b

)
∧ [ΓD7b

] + ch1

(
ϕ∗F

+′

b

)
∧
[
Γ′

D7b

])
∧ [ΓD7a ] . (3.6)

Here, the prime again denotes the Ω(−1)FLσ image and the sums run over all D7-branes b

respectively all O7-planes. Employing the D7-brane tadpole cancellation condition (2.37),

we see that the first line in (3.6) vanishes. For the vanishing of the second line, we use the

D5-brane tadpole cancellation condition (2.43) to arrive at

ASU(ND7a )3 = 0 . (3.7)
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Mixed abelian-non-abelian anomaly. Next, we consider the mixed abelian-non-

abelian anomaly. Along the same lines as above, we compute

AU(1)a−SU(ND7b
)2 =

1

2
δab



∑

D7c

ND7c

(
Icb + Ic′b

)
− 8

∑

O7i

IO7i b


−

ND7a

2

(
Iab − Ia′b

)

= −
ND7a

2

(
Iab − Ia′b

)
, (3.8)

where we used, similarly as for the cubic non-abelian anomaly, the tadpole cancellation

conditions (2.37) and (2.43) for the vanishing of the first term.

Cubic abelian anomaly. For the cubic abelian anomaly, we find

AU(1)a−U(1)2
b

=
ND7a

3
δab



∑

D7c

ND7c

(
Icb + Ic′b

)
− 8

∑

O7i

IO7i b


− ND7a ND7b

(
Iab − Ia′b

)

= −ND7a ND7b

(
Iab − Ia′b

)
, (3.9)

where the pre-factor 1
3 is due to the additional symmetry in the case a = b, and we again

used the tadpole cancellation conditions (2.37) and (2.43).

Mixed abelian-gravitational anomaly. From (3.3), we finally determine the mixed

abelian-gravitational anomaly of a D7-brane a. Employing the tadpole cancellation condi-

tion (2.37), we obtain

AU(1)a−G2 = ND7a



∑

D7b

ND7b

(
Iba + Ib′a

)
− 2

∑

O7i

IO7i a




= ND7a



∑

D7b

ND7b

(
Iba + Ib′a

)
− 8

∑

O7i

IO7i a


+ 6ND7a

∑

O7i

IO7i a

= 6ND7a

∑

O7i

IO7i a . (3.10)

4 The generalized Green-Schwarz mechanism

In type II string theory constructions with D-branes, chiral anomalies originating from a

diagrams such as in figure 1(a) are cancelled via the generalized Green-Schwarz mecha-

nism [2–9]. The key observation for this mechanism to work is that in four dimensions a

two-form A(2) and a scalar B(0) are dual to each other via the Hodge-⋆-operation

dA(2) ∼ ⋆4 dB(0) . (4.1)

Then, if there are couplings in the four-dimensional action of the form

tr
(
F
)
A(2) and tr

(
F 2
)
B(0) , (4.2)

one can construct diagrams which cancel the chiral anomalies. An example of such a

Green-Schwarz diagram can be found in figure 1(b).
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F

F

F

(a) Anomaly Diagram

F

F

F
A(2)

B(0)

(b) Green-Schwarz Diagram

Figure 1. Anomaly and Green-Schwarz diagrams.

4.1 Green-Schwarz couplings

In the present context, the two-forms A(2) and scalars B(0) are obtained from a dimensional

reduction of the R-R p-form potentials Cp and the duality (4.1) is provided by (2.25). To

see this in more detail, we perform a dimensional reduction of C2, C4 and C6 on the

Calabi-Yau manifold X

C2 = CI ωI + D0

C4 = CIσ
I + DI∧ωI + . . .

C6 = DI ∧σI + . . .

(4.3)

where CI respectively CI are four-dimensional scalars and DI as well as DI are two-forms

in R
3,1. The ellipsis indicate that there are further terms coming for instance from the

reduction of Cp on three-cycles and from the reduction on X . However, these terms will

not be of relevance here. Let us also note that from (2.25), we obtain

dCI = − ⋆4dDI ⇒ CI ↔ −DI

dCI = + ⋆4dDI ⇒ CI ↔ +DI (4.4)

where ⋆4 is the Hodge-⋆-operator in four dimensions. The relative sign between these two

dualities will be important in the following.

We now turn to the couplings (4.2) which are contained in the Chern-Simons actions

of the D-branes and O-planes. To determine these, we expand the holomorphic divisor

wrapped by a D7-brane a as

ΓD7a = mI
a γI , mI

a ∈ Z , (4.5)

where {γI} is the basis of four-cycles introduced in (2.11). Next, since here we are consider-

ing gauge groups U(N) for which the corresponding algebra satisfies u(N) ≃ u(1)× su(N),

we write the four-dimensional open string field strength F as

F = f 1 +
∑

A

F
A TA , (4.6)

where f denotes the abelian and F
A stands for the non-abelian part. For the anti-symmetric

representations matrices TA of the gauge group in the fundamental representation, we have

tr
(
TA
)

= 0 , tr
(
TATB

)
=

1

2
δAB , (4.7)
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where the latter relation reflects the usual choice of normalization. Using then (3.2)

and (4.6) together with (4.7), we can evaluate some quantities needed in the following

ch1

(
F
)

= N

(
l2s

f + f

2π
+ ϕ∗B2

)
,

ch2

(
F
)

=
1

2

[
l4s

8π2

∑

A

F
A
F

A + N

(
l2s

f + f

2π
+ ϕ∗B2

)2
]

,

ch3

(
F
)

=
1

6

[
3l4s
8π2

∑

A

F
A
F

A

(
l2s

f

2π
+ ϕ∗B2

)
+ N

(
l2s

f + f

2π
+ ϕ∗B2

)3
]

, (4.8)

where f was the U(1) gauge flux on the D7-branes introduced in (3.2) and appropriate

wedge products are understood.

Given these expressions, we can now identify the Green-Schwarz couplings. In partic-

ular, the tr
(
F
)

terms are obtained from the D7-brane action and read

SCS
D7 = −µ7

∫

D7

[
ch1

(
F
)
∧ C6 + ch2

(
F
)
∧ C4

]
+ . . .

= −
2π

l4s

∫

R3,1

l2s
2π

ND7 f ∧

[
DI mI +

1

l4s
DI ∧

∫

ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . . (4.9)

where the ellipsis denote further couplings not of importance here. The relevant terms

involving tr
(
F 2
)

read

SCS
D7 = −µ7

∫

D7

[
ch2

(
F
)
∧ C4 + ch3

(
F
)
∧ C2

]
+ . . .

= −
2π

l4s

∫

R3,1

1

2

(
l2s
2π

)2
(

1

2

∑

A

F
A
F

A + ND7 f2

)
∧

∧

[
CI mI +

1

l4s
CI

∫

ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . . . (4.10)

The tr
(
R2
)

couplings are contained in the D7-brane action and can be determined us-

ing (2.30) to be of the following form

SCS
D7 = −µ7

∫

D7

1

96

(
l2s
2π

)2

tr
(
R2
)
∧

(
ch0

(
F
)
C4 + ch1

(
F
)
∧ C2

)
+ . . .

= −
2π

l4s

∫

R3,1

1

96

(
l2s
2π

)2

tr
(
R2
)
∧

∧

[
ND7 CI mI +

1

l4s
ND7 C

I

∫

ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . . , (4.11)

while from the O7-plane action, we infer the terms

SCS
O7 = −µ7 Q7

∫

O7

(
−

1

192

(
l2s
2π

)2

tr
(
R2
)
)

∧ C4 + . . .

= −
2π

l4s

∫

R3,1

1

24

(
l2s
2π

)2

tr
(
R2
)

CI mI + . . . . (4.12)
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fa −DI :
l2s
2π

ND7a mI
a ,

fa − DI :
l2s
2π

1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧ ωI ,

f2
a − CI :

(
l2s
2π

)2
1

2

1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧ ωI ,

f2
a − CI :

(
l2s
2π

)2
ND7a

2
mI

a ,

F
2
a − CI :

(
l2s
2π

)2
1

4 ND7a

1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧ ωI ,

F
2
a − CI :

(
l2s
2π

)2
1

4
mI

a ,

R2 − CI :

(
l2s
2π

)2
1

96

1

l4s

∑

a,a′

∫

ΓD7a

ch1

(
F

+
a

)
∧ ωI ,

R2 − CI :

(
l2s
2π

)2
1

96



∑

a,a′

ND7a mI
a + 4

∑

O7i

mI
O7i


 .

Table 3. Summary of couplings relevant for the generalized Green-Schwarz mechanism in the

context of type IIB orientifolds with D3- and D7-branes. Note that in F
+

only the diagonally

embedded U(1) flux (3.2) is turned on.

A summary of the couplings relevant for the generalized Green-Schwarz mechanism in the

present context can be found in table 3, where we employed again the notion of Chern

characters.

4.2 Green-Schwarz diagrams

In this subsection, we compute the contribution of the Green-Schwarz diagrams to the

chiral anomalies.

Cubic non-abelian anomaly. For the cubic non-abelian anomaly, we see that there are

no couplings of the form F − DI or F − DI contained in the Chern-Simons actions (2.28).

We therefore cannot construct the corresponding Green-Schwarz diagrams and so

AGS
SU(ND7)3 = 0 . (4.13)

This is expected since the cubic non-abelian anomaly (3.7) vanishes due to the tadpole

cancellation conditions and does not need to be cancelled.
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Mixed abelian-non-abelian anomaly. Next, we consider the mixed abelian-non-

abelian anomaly. The schematic form of the diagrams to be evaluated is

fa −DI − CI − F
2
b , fa − DI − CI − F

2
b ,

fa −DI − CI − F
2
b′ , fa − DI − CI − F

2
b′ , (4.14)

and with the help of the couplings shown in table 3, we compute

AGS
U(1)a−SU(ND7b

)2 =

(
l2s
2π

)3

ND7a mI
a

(
−1
) 1

4ND7b

1

l4s

∫

ΓD7b

ch1

(
F

+
b

)
∧ ωI

+

(
l2s
2π

)3
1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧ ωI

(
+1
) 1

4
mI

b +
(

b → b′
)

=
1

2

(
l2s
2π

)3
ND7a

2

(
Iab − Ia′b

)
(4.15)

where we have used (3.5) as well as mI
a ωI =

[
ΓD7a

]
. We also utilized that

Iab′ = −Ia′b (4.16)

which is verified by employing (2.39) and noting that F
+

is odd under Ω(−1)FL . Comparing

finally the Green-Schwarz contribution (4.15) to the anomaly (3.8), we see that up to a

numerical prefactor, (4.15) cancels the mixed abelian-non-abelian anomaly.

Cubic abelian anomaly. For the cubic abelian anomaly, we need to compute the fol-

lowing Green-Schwarz diagrams

fa −DI − CI − f2
b , fa − DI − CI − f2

b ,

fa −DI − CI − f2
b′ , fa − DI − CI − f2

b′ . (4.17)

Performing the same steps as for the mixed abelian-non-abelian anomaly, we arrive at

AGS
U(1)a−U(1)2

b
=

1

2

(
l2s
2π

)3

ND7a ND7b

(
Iab − Ia′b

)
, (4.18)

and by comparing with (3.9), we see that the Green-Schwarz contribution cancels the cubic

abelian anomaly up to the same prefactor as for the mixed abelian-non-abelian anomaly.

Mixed abelian-gravitational anomaly. Finally, the mixed abelian-gravitational

anomaly is computed schematically as

fa −DI − CI − R2 , fa − DI − CI − R2 . (4.19)
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Utilizing the couplings shown in table 3 as well as the D5- and D7-brane tadpole cancellation

conditions, we find

AGS
U(1)a−G2 = −

(
l2s
2π

)3
1

96

[
ND7a

∑

b,b′

1

l4s

∫

ΓD7b

ch1

(
F

+
b

)
∧
[
ΓD7a

]

−
1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧



∑

D7b

ND7b

([
ΓD7a

]
+
[
Γ′

D7b

])
+ 4

∑

O7i

[
ΓO7i

]


]

= −

(
l2s
2π

)3
ND7a

8

∑

O7i

IO7i a . (4.20)

By comparing with (3.10), we see that up to a numerical prefactor, the contribution

from the Green-Schwarz diagrams (4.20) has the right form to cancel the mixed abelian-

gravitational anomaly.

4.3 Massive U(1)s and Fayet-Iliopoulos terms

To conclude this section, let us comment on massive U(1) factors and Fayet-Iliopoulos

terms. Using the definition of Chern characters (A.1), from equation (4.9) we can

determine the Stückelberg mass terms for the gauge bosons on the D7-branes to be of the

following form

Smass = −
1

l2s

∫

R3,1

∑

a,a′

fD7a ∧

(
ND7a mI

a DI +
1

l4s
DI ∧

∫

ΓD7a

ch1

(
F

+
D7a

)
∧ ωI

)

= −
1

l2s

∫

R3,1

∑

D7a

fD7a ∧

(
ND7a

(
mI

a − mI
a′

)
DI

+
1

l4s
DI ∧

∫

ΓD7a

ch1

(
F

+
D7a

)
∧
(
ωI + σ∗ωI

))
(4.21)

where in going from the first to the second line we employed that the gauge field is odd

under Ω(−1)FL together with equation (2.39). Let us next define the following two mass

matrices for the gauge fields on the D7-branes

MI+a =
1

l4s

∫

ΓD7a

ch1

(
F

+
a

)
∧
(
ω + σ∗ω

)
I+

, M I−
a = ND7a

(
ma − ma′

)I− , (4.22)

with I+ = 1, . . . , h1,1
+ and I− = 1, . . . , h1,1

− . Then, the massless (linear combinations of)

U(1) gauge fields on the D7-branes are those which are in the kernel of the combined matrix

MIa =

[
MI+a

M
I−

a

]
. (4.23)

Along the same lines as for the D7-branes, for the gauge fields on the D3-branes we find

that due to the orientifold images, there are no mass terms

Smass = −
1

l2s

∫

R3,1

∑

b,b′

fD3b
∧D0 ND3b

= 0 . (4.24)
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With the help of the mass matrices (4.22), we can also determine the Fayet-Iliopoulos

terms for the D7-branes. To do so, we first recall the definition of the axion-dilaton τ , the

moduli GI− and the Kähler moduli TI+ [43, 65]

τ = C0 + i e−φ , GI− =

∫

ΣI−

(
C2 + τ B−

2

)
,

TI+ =

∫

γI+

(
1

2
e−φJ2 + i C4 + iB−

2 ∧ C2 +
i

2
τ
(
B−

2

)2
)

. (4.25)

Here, {γI} ∈ H4(X , Z) and {ΣI} ∈ H2(X , Z) are the basis of four- respectively two-cycles

introduced in equation (2.11). The derivatives of the Kähler potential K with respect to

τ , GI− and TI+ read (see for instance the appendix of [65])

∂K

∂τ
=

i

2

eφ

V

(
V −

1

2

∫

X

(
B−

2

)2
∧ J

)
,

∂K

∂GI−
=

i

2

eφ

V

∫

γI−

B−
2 ∧ J ,

∂K

∂TI+

=
i

2

eφ

V

∫

ΣI+

J , (4.26)

where V denotes the overall volume of the compactification space X . Observing finally

that the mass matrices (4.22) correspond to the holomorphic Killing vectors of the gauged

isometry associated to TI+ and GI− , we can compute the Fayet-Iliopoulos terms as

ξa ∼ −iMI+a
∂K

∂TI+

− iM I−
a

∂K

∂GI−

∼
1

l4s

eφ

V

∫

ΓD7a

ch1

(
F

+
a

)
∧ J +

1

2 l4s

eφ

V

∫

ΓD7a−Γ′

D7a

ND7a B−
2 ∧ J

∼
1

l4s

eφ

V

∫

ΓD7a

ch1

(
Fa

)
∧ J , (4.27)

where we employed the definition (A.1) as well as (2.39) together with (2.2). The vanishing

of the D-term corresponding to a D7-brane without matter fields translates into ξa = 0,

which leads the well-known condition f ∧ J |ΓD7a
= 0 for a D7-brane with U(1) flux f to be

supersymmetric [15, 48, 49].

5 Generalizations: D9- and D5-branes

So far, we have studied the tadpole cancellation conditions and the generalized Green-

Schwarz mechanism for type IIB orientifolds with D3- and D7-branes. However, it is possi-

ble to introduce also D9- and D5-branes which modify the tadpole cancellation conditions

and therefore also the discussion for the chiral anomalies.

The reason for usually not considering D9- and D5-branes is that the orientifold pro-

jection maps them to anti-D9- and anti-D5-branes which are supersymmetric only at a

particular point in moduli space. Nevertheless, we can study the tadpole cancellation con-

ditions and the chiral anomalies for such D-brane setups which we will do in some detail

in this section.
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5.1 Tadpole cancellation conditions

In order to determine the tadpole cancellation conditions, let us recall equation (2.35)

and be more concrete about how the orientifold projection acts on the manifold a D9- or

D5-brane is wrapping. In particular, we find

Γ′
D9 = −ΓD9 , Γ′

D5 = −σ ΓD5 , (5.1)

where ΓD9 = X is invariant under the holomorphic involution σ and ΓD5 is a two-cycle

in X wrapped by a the D5-brane. Furthermore, note that we are also allowed to turn on

gauge flux FD9 and FD5 on the D9- respectively D5-branes which is odd under Ω(−1)FL .

D9-brane tadpole cancellation condition. In a very similar way as in section 2,

we can now compute the D9-brane tadpole cancellation condition. The variation of the

Chern-Simons action (2.28) with respect to C10 reads

δC10S
CS
D9 = −

2π

l10s

κ9

∫

R3,1×X

δC10 ∧
[
ΓD9

]
∧ ch0

(
FD9

)
, (5.2)

where [ΓD9] is the Poincaré dual of ΓD9 in X , which is a zero-form, and the sign κ9 had

been introduced in equation (2.29). Denoting the total number of D9-branes with gauge

flux Fa by ND9a = ch0(FD9a), we find for the equation of motion originating from C10 that

0 = κ9

∑

D9a

ND9a

([
ΓD9a

]
+
[
Γ′

D9a

])
. (5.3)

D7-brane tadpole cancellation condition. For the D7-brane tadpole cancellation

condition, we compute the variation of the D9-brane Chern-Simons action with respect

to C8 as

δC8S
CS
D9 = −

2π

l10s

κ9

∫

R3,1×X

δC8 ∧
[
ΓD9

]
∧ ch1

(
FD9

)
. (5.4)

Taking into account the orientifold images and combining (5.4) with the variations of

the D7-brane, O7-plane and bulk action (2.33) respectively (2.26), we find the following

tadpole cancellation condition

κ7

∑

a,a′

ND7a [ΓD7a ] + κ9

∑

b,b′

[
ΓD9b

]
∧ ch1

(
FD9b

)
= 8κ7

∑

O7i

[ΓO7i
] (5.5)

where the prime denotes the image under the orientifold projection Ω(−1)FLσ. However,

in its present form (5.5) still depends on the continuous fields B−
2 which is not desirable.

But, writing out the first Chern character as

ch1

(
FD9

)
= ch1

(
F

+
D9

)
+ ND9 B−

2 , (5.6)

and noting that B−
2 is even under Ω(−1)FLσ while [ΓD9] is odd, we see that the dependence

of (5.5) on B−
2 vanishes. We can thus simply replace F → F

+
in the D7-brane tadpole

cancellation condition above.

– 20 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
2

D5-brane tadpole cancellation condition. Let us continue with the equation of mo-

tion for C6. The variation of the D9-brane Chern-Simons action is computed as

δC6S
CS
D9 = −

2π

l10s

κ9

∫

R3,1×X

δC6 ∧
[
ΓD9

]
∧

(
ch2

(
FD9

)
+ l4s ND9

c2

(
X
)

24

)
, (5.7)

where we observed that the tangential bundle of a D9-brane is equal to the tangential bundle

of X . The contribution of a D5-brane to the equation of motion of C6 is found to be

δC6S
CS
D5 = −

2π

l10s

κ5

∫

R3,1×X

δC6 ∧
[
ΓD5

]
∧ ch0

(
FD5

)
, (5.8)

where [ΓD5] denotes the Poincaré dual of ΓD5 in X . Taking into account the orientifold

images and combining (5.7) as well as (5.8) with the variations computed in (2.32)

and (2.26), we arrive at

0 =

∫

X

ωI ∧

[
κ7

∑

a,a′

[
ΓD7a

]
∧ ch1

(
ϕ∗FD7a

)

+κ9

∑

b,b′

[
ΓD9b

]
∧

(
ch2

(
FD9b

)
+ l4s ND9b

c2

(
X
)

24

)

+κ5

∑

c,c′

[
ΓD5c

]
ND5c

]
(5.9)

where {ωI} is again a basis of (1, 1)-forms on X . Since (5.9) still depends on B−
2 , let us

employ (2.41) to separate out the B−
2 part from the first Chern character and use the

definition (A.1) to write the second Chern character as

ch2

(
FD9

)
= ch2

(
F

+
D9

)
+ ch1

(
F

+
D9

)
∧ B−

2 +
ND9

2

(
B−

2

)2
. (5.10)

Utilizing then the D7-brane tadpole condition (5.5), we see that the dependence of (5.9)

on B−
2 vanishes, and so we can simply replace F → F

+
in (5.9).

D3-brane tadpole cancellation condition. To finish our discussion of the tadpole

cancellation conditions, let us turn to the equation of motion for C4. The variation of the

D9-brane Chern-Simons action is calculated as

δC4S
CS
D9 = −

2π

l10s

κ9

∫

R3,1×X

δC4 ∧
[
ΓD9

]
∧

(
ch3

(
FD9

)
+ l4s

c2

(
X
)

24
∧ ch1

(
FD9

))
, (5.11)

while for the D5-brane action we find

δC4S
CS
D5 = −

2π

l10s

κ5

∫

R3,1×X

δC4 ∧
[
ΓD5

]
∧ ch1

(
ϕ∗FD5

)
. (5.12)
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Taking into account the orientifold images and combining the two expressions above

with (2.31) as well as (2.26), we arrive at

4Nflux =
κ7

l6s

∑

a,a′

∫

X

[
ΓD7a

]
∧

(
ch2

(
ϕ∗FD7a

)
+ l4s ND7a

c2

(
ΓD7a

)

24

)

+
κ7

l6s

∑

O7i

∫

X

[
ΓO7i

]
∧

(
l4s

c2

(
ΓO7i

)

6

)

+
κ9

l6s

∑

b,b′

∫

X

[
ΓD9b

]
∧

(
ch3

(
FD9b

)
+ l4s ch1

(
FD9b

)
∧

c2

(
X
)

24

)

+
κ5

l6s

∑

c,c′

∫

X

[
ΓD5c

]
∧ ch1

(
ϕ∗FD5c

)

+
κ3

l6s

∑

d,d′

∫

X

[
ΓD3d

]
ND3d

+
κ3

l6s

∑

O3j

∫

X

[
ΓO3j

](
−

1

2

)
(5.13)

where [ΓD3] = X denotes the Poincaré dual of ΓD3 in X . Note that we have organized the

appearing terms for later convenience. Similarly as in the previous cases, the dependence of

this tadpole cancellation condition on the continuous fields B−
2 should vanish. And indeed,

using the definition (A.1), we can write the third Chern character as

ch3

(
FD9

)
= ch3

(
F

+
D9

)
+ ch2

(
F

+
D9

)
∧ B−

2 +
1

2
ch1

(
F

+
D9

)
∧
(
B−

2

)2
+

ND9

3!

(
B−

2

)3
, (5.14)

while for the first and second Chern character we use (5.6) respectively (5.10). The terms

in (5.13) involving B−
2 can then be summarized as

1

l6s

∑

a,a′

∫

X

B−
2 ∧

[
ΓD7a

]
∧ ch1

(
ϕ∗F

+
D7a

)

+
κ9

l6s

∑

b,b′

∫

X

B−
2 ∧

[
ΓD9b

]
∧

(
ch2

(
F

+
D9b

)
+ l4s ND9b

c2

(
X
)

24

)

+
κ5

l6s

∑

c,c′

∫

X

B−
2 ∧

[
ΓD5c

]
ND5c , (5.15)

which cancel due to the D5-brane tadpole cancellation condition (5.9). In a very similar

way as in section 2, we see that the terms in (5.13) proportional to (B−
2 )2 have to vanish due

to the D7-brane tadpole cancellation condition (5.5). Finally, using (5.14), we observe that

the terms proportional to (B−
2 )3 vanish, due to the tadpole cancellation condition (5.3).

In (5.13), we can therefore replace F → F
+
.

5.2 Chiral spectrum

After having explicitly determined the tadpole cancellation conditions for a combined sys-

tem of D9-, D7-, D5- and D3-branes, we will now formulate them in a more compact way.

This will allow us to infer the rules for determining the chiral spectrum from the vanishing

of the cubic non-abelian anomaly more easily.
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Summary of tadpole cancellation conditions. In order to express the tadpole can-

cellation conditions of the last subsection in a unified way, following for instance [63] (see

also [52, 53, 61]), we define the charges5

Q
(
ΓDp ,F

+
Dp

)
= κp

[
ΓDp

]
∧ ch

(
ϕ∗F

+
Dp

)
∧

√√√√ Â
(
RTDp

)

Â
(
RNDp

) ,

Q
(
ΓOp

)
= κp Qp

[
ΓDp

]
∧

√
L
(
RTDp

/4
)

L
(
RNDp

/4
) . (5.16)

The quantities involved here had been introduced around equation (2.28), but let us note

once more that [Γ] denotes the Poincaré dual of Γ in X , the R-R charge of the O-planes

was Qp = −2p−4 and that the signs κp = ±1 had been introduced in (2.29).

By comparing the charges (5.16) with the explicit tadpole cancellation condi-

tions (5.3), (5.5) and (5.9), we observe that the Dp-brane tadpoles for p = 9, 7, 5 can

be expressed in the following way

0 =
∑

Dq,Dq′

Q
(
ΓDq ,F

+
Dq

)
+
∑

Oq

Q
(
ΓOq

)∣∣∣∣
(9−p)−form

. (5.17)

In (5.17), the restrictions selects to the zero-, two- and four-form part, and the sums in this

and the following formulas run over all Dp-branes as well as over all Op-planes. Concretely,

this means
∑

Dq,Dq′

=
∑

D9a

+
∑

D9a′

+
∑

D7b

+ . . . +
∑

D3d′

,
∑

Oq

=
∑

O7i

+
∑

O3j

. (5.18)

By comparing the charges (5.16) with the explicit form of the D3-brane tadpole (5.13), we

see that, using (2.27), this condition can be expressed as

−H3 ∧ F3 =
∑

Dq,Dq′

Q
(
ΓDq ,F

+
Dq

)
+
∑

Oq

Q
(
ΓOq

)∣∣∣∣
6−form

. (5.19)

Rules for determining the chiral spectrum. Let us now state the rules for computing

the chiral spectrum in the present context. These have been inferred from the requirement

that the cubic non-abelian anomaly should vanish using the tadpole cancellation condition.

For that purpose, following for instance [63], we define

IDp Dq =
1

NDp NDq

∫

X

Q
(
ΓDp ,F

+
Dp

)
∧ Q

(
ΓDq ,−F

+
Dq

)
,

IOp Dq =
1

NDq

∫

X

Q
(
ΓOp

)
∧Q

(
ΓDq ,−F

+
Dq

)
. (5.20)

Note that here the prefactor is again due to the fact that we are counting representations in-

stead of the chiral number of massless excitations. The multiplicities of the bi-fundamental

and the symmetric as well as anti-symmetric representations in terms of these indices are

given in table 4.

5Note that we actually have to formulate these expressions in terms of sheaves. A naive way to com-

pensate for this inaccuracy is to evaluate the Chern characters on the submanifold they are defined on

whenever possible.
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Representation Multiplicity
(
NDp, NDq

)
IDp Dq(

NDp, NDq

)
IDp′ Dq

SDp
1
2

(
IDp′Dp + 1

4

∑

Oq

IOqDp

)

ADp
1
2

(
IDp′Dp −

1
4

∑

Oq

IOqDp

)

Table 4. Rules for determining the chiral spectrum for a combined system of D9-, D7-, D5- and

D3-branes in the context of type IIB orientifolds with O7- and O3-planes. The sums run over all

O-planes as in equation (5.18).

Chiral anomalies. The expressions in table 4 had been adjusted to the fact that the

generalized Green-Schwarz mechanism does not provide any terms to cancel the cubic non-

abelian anomaly. This anomaly therefore has to vanish due to the tadpole cancellation

conditions which we verify now. In particular, using (3.3) and table 1, we compute

ASU(NDp)3 =
∑

Dq 6=Dp

NDq

(
IDq Dp + IDq′ Dp

)
+
(
NDp + 4

) 1

2

(
IDp′Dp + 1

4

∑

Oq

IOq Dp

)

+
(
NDp − 4

) 1

2

(
IDp′Dp −

1
4

∑

Oq

IOq Dp

)

=
∑

Dq

NDq

(
IDq Dp + IDq′ Dp

)
+
∑

Oq

IOq Dp

=
1

NDp

∫

X

( ∑

Dq,Dq′

Q
(
ΓDq ,F

+
Dq

)
+
∑

Oq

Q
(
ΓOq

))
∧ Q

(
ΓDp ,−F

+
Dp

)
. (5.21)

Employing then the tadpole cancellation conditions (5.17) and (5.19) together with the

explicit form of the charges (5.16), we see that the anomaly (5.21) can be simplified to

ASU(ND3)3 = ASU(ND5)3 = ASU(ND7)3 = 0 ,

ASU(ND9)3 = −
κ9

ND9

∫

ΓD9

H3 ∧ F3
Freed−Witten

= 0 . (5.22)

For D9-branes, the cubic non-abelian anomaly vanishes due to the Free-Witten anomaly

cancellation condition [66] which means that H3 restricted to a D-brane has to be zero.

Along the same lines as in section 3, we can determine the mixed abelian-non-abelian,

the cubic abelian and the mixed abelian-gravitational anomalies to be of the following form

AU(1)Dp−SU(NDq)2 =
1

2
δDp,Dq ASU(NDp)3 −

1

2
NDq

(
IDp Dq − IDp′Dq

)
,

AU(1)Dp−U(1)2Dq
=

NDp

3
δDp,Dq ASU(NDp)3 − NDp NDq

(
IDp Dq − IDp′Dq

)
,

AU(1)Dp−G2 = NDp ASU(NDp)3 −
3

4
NDp

∑

Oq

IOq Dp . (5.23)
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We are not going to show that the dimensional reduction of the Chern-Simons actions (2.28)

provides the required Green-Schwarz couplings to cancel these anomalies. This can be done

in a very similar way as in section 4.

5.3 Massive U(1)s and Fayet-Iliopoulos terms

We finish this section with a discussion of massive U(1) fields and the Fayet-Iliopoulos

terms. For the case of D7- and D3-branes, this has been done in section 4.3 so here we will

focus on the D5- and D9-branes. Furthermore, we will consider only diagonally embedded

abelian fluxes on the D5- and D9-branes in order to simplify the discussion.

To determine the couplings of the U(1) gauge bosons on the D5-branes to the R-R

p-form potentials Cp, let us expand the two-cycle the D5-brane is wrapping as

ΓD5 = mD5 I ΣI , (5.24)

where {ΣI} denotes the basis of two-cycles introduced in equation (2.11). Writing then

out the Chern characters as in equation (4.8), we obtain

Smass = −
κ5

l2s

∫

R3,1

∑

a,a′

fD5a ∧

(
ND5aDI ∧

1

l2s

∫

ΓD5a

ωI + D0 ∧
1

l2s

∫

ΓD5a

ch1

(
F

+
D5a

))

= −
κ5

l2s

∫

R3,1

∑

a

fD5a ∧

(
ND5a

(
mD5a I + mD5a′ I

)
DI

)
, (5.25)

where the term involving ch1(F
+
) vanishes due to its orientifold image. The mass matrix

for the U(1) gauge bosons on the D5-branes therefore reads

MI+ D5a = ND5a

(
mD5a + mD5a′

)
I+

. (5.26)

Finally, recalling the form of the derivative of the Kähler potential with respect to TI+ given

in equation (4.26) and noting that (5.26) corresponds to the holomorphic Killing vectors

of the gauge isometry associated to TI+, we can determine the Fayet-Iliopoulos term of a

D5-brane as

ξD5a ∼ −iMI+D5a

∂K

∂TI+

∼
1

l2s

eφ

V
ND5a

∫

ΓD5a

J . (5.27)

In order to study the mass matrix and Fayet-Iliopoulos terms for the D9-branes, let us

expand the R-R eight-form potential C8 in the following way

C8 = D0 ∧ dvolX . (5.28)
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Writing out the fourth Chern character similarly as in (4.8), we can determine the mass

terms for the U(1) gauge bosons on the D9-branes as

Smass = −
κ9

l2s

∫

R3,1

∑

a,a′

fD9a ∧

[
D0 ∧

[
ΓD9a

]
ND9a (5.29)

+DI ∧
1

l6s

∫

ΓD9a

σI ∧ ch1

(
F

+
D9a

)

+DI ∧
1

l6s

∫

ΓD9a

ωI ∧

(
ch2

(
F

+
D9a

)
+ l4s ND9a

c2

(
X
)

24

)

+D0 ∧
1

l6s

∫

ΓD9a

(
ch3

(
F

+
D9a

)
+ l4s ch1

(
F

+
D9a

) c2

(
X
)

24

)]
.

Taking into account the explicit expression for the orientifold images, we see that the

couplings fD9∧D0 in the last line of (5.29) vanish. From the remaining terms, we determine

the following mass matrices

fD9a − D0 : MD9a = 2 ND9a ,

fD9a −DI : M
I−
D9a

=
1

l6s

∫

X

ch1

(
F

+
D9a

)
∧
(
σI − σ∗σI

)
,

fD9a − DI : MI+D9a =
1

l6s

∫

X

(
ch2

(
F

+
D9a

)
+ l4s ND9a

c2

(
X
)

24

)
∧
(
ω + σ∗ω

)
I+

, (5.30)

where σ∗σI denotes the image of the basis four-form σI under the holomorphic involution

σ. The Fayet-Iliopoulos terms for the D9-branes are then computed similarly as in

the previous cases using the derivatives (4.26) of the Kähler potential. Concretely, by

employing (2.45) we find

ξD9a ∼ −iMI+D9a

∂K

∂TI+

− iM
I−
D9a

∂K

∂GI−
+ iMD9a

∂K

∂τ

∼
eφ

V

[
1

l6s

∫

X

(
ch2

(
FD9a

)
+ l4s ND9a

c2

(
X
)

24

)
∧ J − V

]
. (5.31)

6 Summary and conclusions

In this work, we have studied type IIB string theory compactifications on orientifolds

of smooth compact Calabi-Yau manifolds with D3- and D7-branes. In particular, we have

derived the tadpole cancellation conditions in detail and we have shown how the generalized

Green-Schwarz mechanism cancels the chiral anomalies. Of course, in accordance with

results obtained for toroidal orbifolds, this was expected from the very beginning, however,

the detailed study has lead to the following observations.

• For an orientifold projection Ω(−1)FLσ leading to h1,1
− 6= 0, that is there are two- and

four-cycles anti-invariant under the holomorphic involution σ, in general the D5-brane

tadpole cancellation condition leads to a non-trivial constraint. This has already been

mentioned in [16], however, here we have worked out this condition in detail.
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• We have furthermore seen that for the cancellation of chiral anomalies not only the

D7-brane tadpole cancellation condition has to be employed, but in general also the

vanishing of the induced D5-brane charges.

• In section 5, we have generalized our analysis by including also D9- and D5-branes

for which we have worked out the tadpole cancellation conditions in detail. Utilizing

the requirement that the latter ensure the vanishing of the cubic non-abelian

anomaly, we were able to determine a general set of rules for computing the chiral

spectrum of the combined system of D9-, D7-, D5- and D3-branes. These have been

summarized in table 4.

The work presented in this paper is intended to provide a piece for a better under-

standing of the open sector of type IIB orientifold compactifications on smooth Calabi-Yau

manifolds with D3- and D7-branes. In particular, we have seen that not only the well-

known D3- and D7-brane tadpole cancellation conditions arise in such setups, but that in

general also the cancellation of the induced D5-brane charge is crucial for the consistency of

a (compact) model. Clearly, this observation has to be taken into account when embedding

local F-theory models into compact Calabi-Yau manifolds.

We have also observed that including D9- and D5-branes leads to a more involved

structure of the open sector. However, it might be interesting to study the combined

system of D9-, D7-, D5- and D3-branes in type IIB orientifolds with O7- and O3-planes

in more detail, and to work out its relation to F-theory. This could lead to a better

understanding of the connection between type IIB string theory and F-theory.
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A More details on the Chern-Simons action

In this appendix, we provide the definitions of the quantities used in the Chern-Simons

actions (2.28) for D-branes and O-planes, and give some details of the calculation leading

to (2.30).

Definitions. We start with the definitions. The Chern character of a complex vector

bundle F is defined in the following way

ch
(
F
)

=

∞∑

n=0

chn

(
F
)

, chn

(
F
)

=
1

n!
tr

[(
iF

2π

)n]
, (A.1)
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where the trace is over the fundamental representation. The Chern character satisfies

ch
(
E ⊕ F

)
= ch

(
E
)

+ ch
(
F
)

. (A.2)

The Â-genus and the Hirzebruch L-polynomial can be expressed in terms of the Pontrjagin

classes pi as

Â
(
F
)

= 1 −
1

24
p1 +

1

5760

(
7p2

1 − 4p2

)
+ . . . ,

L
(
F
)

= 1 +
1

3
p1 +

1

45

(
−p2

1 + 7p2

)
+ . . . , (A.3)

and satisfy

Â
(
E ⊕ F

)
= Â

(
E
)
∧ Â

(
F
)

, L
(
E ⊕ F

)
= L

(
E
)
∧ L

(
F
)

. (A.4)

For the following, we will only need the definition of the first Pontrjagin class of a real

vector bundle which reads

p1

(
F
)

= −
1

2
tr

[(
F

2π

)2
]

, (A.5)

where the trace is again over the fundamental representation. If the real 2k-dimensional

bundle FR can be written as a complex k-dimensional bundle FC, we have the relation

p1

(
FR

)
=
[
c1

(
FC

)]2
− 2 c2

(
FC

)
, (A.6)

where c1 and c2 denote the first and second Chern class expressed as

c1

(
F
)

= ch1

(
F
)

, c2

(
F
)

=
1

2

[
ch1

(
F
)]2

− ch2

(
F
)

. (A.7)

Calculation leading to (2.30). After stating these definitions and relations, let us

concentrate on a complex two-dimensional holomorphic submanifold Γ of a complex three-

dimensional Calabi-Yau manifold X . Since the first Chern class of a Calabi-Yau manifold

vanishes, we find

0 = c1

(
TX

)
= ch1

(
TΓ ⊕ NΓ

)
= ch1

(
TΓ

)
+ ch1

(
NΓ

)
= c1

(
TΓ

)
+ c1

(
NΓ

)
, (A.8)

where T denotes the tangential bundle and N the normal bundle. Noting then that the

second Chern class of a line bundle such as NΓ vanishes, we calculate using (A.6) and (A.8)

p1

(
TΓ

)
− p1

(
NΓ

)
=
[
c1

(
TΓ

)]2
− 2 c2

(
TΓ

)
−
[
c1

(
NΓ

)]2
+ 2 c2

(
NΓ

)
= −2 c2

(
TΓ

)
(A.9)

where we interpreted the real vector bundles as complex ones. This computation allows us

now to write the Â-terms in the Chern-Simons action more feasible. The square root as
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well as the inverse of the Â-genus are understood as a series expansion and using (A.4),

we find
√

Â(RT )

Â(RN )
=

√
Â(R(4)) ∧

√√√√Â(R
(6)
T )

Â(R
(6)
N )

=

(
1 −

1

48
p1

(
R(4)

)
+ . . .

)
∧

(
1 −

1

48
p1

(
R

(6)
T

)
+

1

48
p1

(
R

(6)
N

)
+ . . .

)

=

(
1 +

1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧

(
1 +

l4s
24

c2

(
Γ
)

+ . . .

)
, (A.10)

where (4) denotes the four-dimensional and (6) the internal part of R. In going from the

second to the third line, we employed our definition (2.23) and we adjusted our notation as

p1

(
R

(6)
T

)
=l4s p1

(
RT

)
= l4s p1

(
TΓ

)
, c2

(
TΓ

)
=c2

(
Γ
)

,

p1

(
R

(6)
N

)
=l4s p1

(
RN

)
= l4s p1

(
NΓ

)
. (A.11)

Along the same lines, we obtain for the Hirzebruch L-polynomial the following result
√

L(RT /4)

L(RN/4)
=

(
1 −

1

192

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧

(
1 −

l4s
48

c2

(
Γ
)

+ . . .

)
. (A.12)

B Discussion for SO(2N) and Sp(2N)

Here, we briefly discuss the generalized Green-Schwarz mechanism for the case of gauge

groups SO(2N) and Sp(2N). Since both Lie groups are simple, there are no cubic abelian or

mixed abelian-gravitational anomalies for these cases. For the cubic non-abelian anomaly,

let us note that the anomaly is proportional to

Aabc(r) =
1

2
A(r) dabc (B.1)

where dabc is the unique symmetric invariant. This invariant only exists for SU(N) and

SO(6) (which has the same Lie algebra as SU(4)) and so there is no cubic non-abelian

anomaly to be studied in the present case.

For the mixed abelian-non-abelian anomaly, let us note that the dimension and the

index for the fundamental representation of both SO(2N) and Sp(2N) are found to be

dim
(
F
)

= 2N , C
(
F
)

= 1 . (B.2)

The anomaly coefficient is then computed as

AU(1)a−Sp/SO(2ND7b
)2 =

∑

F

Qa

(
F
)

Cb

(
F
)

= −ND7a

(
Iab − Ia′b

)
, (B.3)

which is, up to a factor of 1
2 , the same as in (3.8). For the calculation of the Green-Schwarz

diagrams, we note that C(F ) = 1 by definition means

tr
(
TA TB

)
= δAB , (B.4)
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which differs from the result for SU(N) by a factor of 1
2 . Using this observation and

following the same steps as in the computation for SU(N), one finds that the Green-

Schwarz diagrams are precisely of the form (B.3) (up to a common prefactor). Therefore,

also for SO(2N) and Sp(2N) the mixed abelian-non-abelian anomalies are cancelled via

the generalized Green-Schwarz mechanism.
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